Regulation of Connexin Hemichannels by Monovalent Cations

نویسندگان

  • Miduturu Srinivas
  • D. Paola Calderon
  • Jack Kronengold
  • Vytas K. Verselis
چکیده

Opening of connexin hemichannels in the plasma membrane is highly regulated. Generally, depolarization and reduced extracellular Ca2+ promote hemichannel opening. Here we show that hemichannels formed of Cx50, a principal lens connexin, exhibit a novel form of regulation characterized by extraordinary sensitivity to extracellular monovalent cations. Replacement of extracellular Na+ with K+, while maintaining extracellular Ca2+ constant, resulted in >10-fold potentiation of Cx50 hemichannel currents, which reversed upon returning to Na+. External Cs+, Rb+, NH4+, but not Li+, choline, or TEA, exhibited a similar effect. The magnitude of potentiation of Cx50 hemichannel currents depended on the concentration of extracellular Ca2+, progressively decreasing as external Ca2+ was reduced. The primary effect of K+ appears to be a reduction in the ability of Ca2+, as well as other divalent cations, to close Cx50 hemichannels. Cx46 hemichannels exhibited a modest increase upon substituting Na+ with K+. Analyses of reciprocal chimeric hemichannels that swap NH2- and COOH-terminal halves of Cx46 and Cx50 demonstrate that the difference in regulation by monovalent ions in these connexins resides in the NH2-terminal half. Connexin hemichannels have been implicated in physiological roles, e.g., release of ATP and NAD+ and in pathological roles, e.g., cell death through loss or entry of ions and signaling molecules. Our results demonstrate a new, robust means of regulating hemichannels through a combination of extracellular monovalent and divalent cations, principally Na+, K+, and Ca2+.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divalent Cations Regulate Connexin Hemichannels by Modulating Intrinsic Voltage-dependent Gating

Connexin hemichannels are robustly regulated by voltage and divalent cations. The basis of voltage-dependent gating, however, has been questioned with reports that it is not intrinsic to hemichannels, but rather is derived from divalent cations acting as gating particles that block the pore in a voltage-dependent manner. Previously, we showed that connexin hemichannels possess two types of volt...

متن کامل

Isoform-specific phosphorylation-dependent regulation

18 Connexins (Cx) form gap junction channels made up of two connexons 19 (hemichannels) from adjacent cells. Unopposed hemichannels may open towards the extracellular 20 space upon stimulation by e.g. removal of divalent cations from the extracellular solution and allow 21 isoform-specific transmembrane flux of fluorescent dyes and physiologically relevant molecules, 22 such as ATP and ions. Cx...

متن کامل

Connexin hemichannels and cell-cell channels: comparison of properties.

Connexin46 (Cx46) forms functional hemichannels in the absence of contact by an apposed hemichannel and we have used these hemichannels to study gating and permeation at the single channel level with high time resolution. Using both cell-attached and -excised patch configurations, we find that single Cx46 hemichannels exhibit some properties expected of half of a gap junction channel, as well a...

متن کامل

Extracellular Cysteine in Connexins: Role as Redox Sensors

Connexin-based channels comprise hemichannels and gap junction channels. The opening of hemichannels allow for the flux of ions and molecules from the extracellular space into the cell and vice versa. Similarly, the opening of gap junction channels permits the diffusional exchange of ions and molecules between the cytoplasm and contacting cells. The controlled opening of hemichannels has been a...

متن کامل

Connexin hemichannels in the lens

The normal function and survival of cells in the avascular lens is facilitated by intercellular communication through an extensive network of gap junctions formed predominantly by three connexins (Cx43, Cx46, and Cx50). In expression systems, these connexins can all induce hemichannel currents, but other lens proteins (e.g., pannexin1) can also induce similar currents. Hemichannel currents have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 127  شماره 

صفحات  -

تاریخ انتشار 2006